Zinc and Cadmium Dihydroxide Molecules: Matrix Infrared Spectra and Theoretical Calculations

Xuefeng Wang and Lester Andrews*

Chemistry Department, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319 Received: January 20, 2005; In Final Form: February 22, 2005

Laser-ablated zinc and cadmium atoms were mixed uniformly with H_2 and O_2 in excess argon or neon and with O_2 in pure hydrogen or deuterium during deposition at 8 or 4 K. UV irradiation excites metal atoms to insert into O_2 producing OMO molecules (M = Zn, Cd), which react further with H_2 to give the metal hydroxides M(OH)₂ and HMOH. The M(OH)₂ molecules were identified through O–H and M–O stretching modes with appropriate HD, D_2 , ^{16,18} O_2 , and ¹⁸ O_2 isotopic shifts. The HMOH molecules were characterized by O–H, M–H, and M–O stretching modes and an M–O–H bending mode, which were particularly strong in pure H₂/D₂. Analogous Zn and Cd atom reactions with H₂O₂ in excess argon produced the same M(OH)₂ absorptions. Density functional theory and MP2 calculations reproduce the IR spectra of these molecules. The bonding of Group 12 metal dihydroxides and comparison to Group 2 dihydroxides are discussed. Although the Group 12 dihydroxide O–H stretching frequencies are lower, calculated charges show that the Group 2 dihydroxide molecules are more ionic.

Introduction

Zinc and cadmium dihydroxide are known compounds: Zn- $(OH)_2$ is a base with some amphoteric character, and Cd $(OH)_2$ is more basic without the amphoteric property.¹ Solid mercury hydroxide is unknown, but the linear HO-Hg-OH unit exists in an acidified aqua ion Hg²⁺ solution, which is believed to be an extremely weak base.² However, chemical comparison with Group 2 dihydroxides shows a different trend: Be $(OH)_2$ is amphoteric, Mg $(OH)_2$ is a base, while the Ca, Sr, and Ba dihydroxides are very strong bases.¹

The molecular dihydroxides $M(OH)_2$ (M = Zn, Cd) are unknown, but Hg(OH)₂ has recently been formed in solid matrixes by this group.³ In that work, thermally vaporized Hg atoms are co-condensed with O2 and H2 in excess argon or neon at low temperature. Subsequently Hg is excited to the ³P state by mercury arc irradiation, which reacts with O₂ and H₂ in solid argon to give Hg(OH)₂.³ IR spectra and theoretical calculations suggest a linear O-Hg-O structure. Metal hydroxides are formed with little water and water polymer byproduct, and the O-H stretching mode of the major product appeared without contamination. Similar experiments have been done recently with Group 2 metals using laser-ablation technology, and all $M(OH)_2$ (M = Be-Ba) molecules are identified by their OH and O-M-O stretching modes.^{4,5} Finally thermal and photolytic reactions of Mg, Ca, Sr, Ba, Zn, Cd, and Hg (M) atoms with H₂O have been investigated, and insertion products HMOH were identified in solid argon.^{6,7} However the O-H stretching region is masked by very strong water bands, which prevents observation of this characteristic vibrational mode.

In this paper we report the reactions of Zn and Cd with O_2 + H_2 in solid argon and neon. The O-M-O molecules are generated from excited M and O_2 , which further react with H_2 giving M(OH)₂ and HMOH (M = Zn, Cd). IR spectra are employed to collect molecular vibrational frequency information

and theoretical calculations are used to determine molecular spectroscopic and structural properties.

Experimental and Computational Methods

Laser-ablated metal including Zn and Cd atom reactions with oxygen and hydrogen mixtures in excess hydrogen, deuterium, and neon during condensation at 4 K and argon at 8 K have been described in our previous papers.^{8–10} The Nd:YAG laser fundamental (1064 nm, 10–20 mJ/pulse, 10 Hz repetition rate with 10-ns pulse width) was focused onto a rotating metal target (Johnson Matthey), which gave a bright ablation plume spreading uniformly to the cold CsI window. The zinc and cadmium targets were filed to remove the oxide coating and immediately placed in the vacuum chamber. FTIR spectra were recorded at 0.5-cm⁻¹ resolution on a Nicolet 750 spectrometer with 0.1-cm⁻¹ accuracy using a HgCdTe type B detector. Matrix samples were subjected to photolysis by a medium-pressure mercury arc lamp (Philips, 175W, globe removed).

Experiments were also done using H_2O_2 as the reagent.^{11,12} Urea hydrogen peroxide (UHP) (Aldrich, 98%) sample (about 20 mg) was placed between glass wool plugs behind an in-line Teflon-Pyrex needle valve. Argon gas was passed over the UHP sample and co-deposited with metal atoms at 10 K.

Complementary density functional theory (DFT) calculations were performed using the Gaussian 98 program,¹³ the B3LYP density functional, and the 6-311++G(3df,3pd) basis set for zinc, hydrogen, and oxygen atoms and Stuttgart/Dresden ECP (SDD) for cadmium. All of the geometrical parameters were fully optimized, and the harmonic vibrational frequencies were obtained analytically at the optimized structures. Additional MP2 calculations were done for comparisons.

Results

IR spectra are presented for zinc and cadmium atom reactions with O_2 and H_2 mixtures in excess argon and neon. Some bands

^{*} To whom correspondence should be addressed. Email: lsa@virginia.edu.

Figure 1. A and B: IR spectra in the 3800–3600-, 2800–2700-, 2000–1300-, and 800–440-cm⁻¹ regions for laser-ablated Zn codeposited with 6% H₂ + 0.4% O₂ in excess argon at 10 K. (a) H₂+O₂ deposition, (b) after $\lambda > 220$ nm irradiation, (c) H₂ + ^{16,18}O₂ deposition followed by $\lambda > 220$ nm irradiation, (d) H₂+¹⁸O₂ deposition followed by $\lambda > 220$ nm irradiation, (e) HD + O₂ deposition followed by $\lambda > 220$ nm irradiation, and (f) D₂ +O₂ deposition, and (g) after $\lambda > 220$ nm irradiation.

are in common and have been observed in previous metal reactions with oxygen or hydrogen in solid matrixes. In the laser ablation process, H–H bonds are broken, and H atoms, H⁺, and electrons are produced. The H⁺ is trapped in the argon lattice to give Ar_nH^+ and Ar_nD^+ at 903.6 and 643.1 cm⁻¹ that have been assigned in early reports.^{14,15} The H atom is attached to O₂ to give HO₂ radical (1388.4, 1101.9 cm⁻¹) and D atom to O₂ to give DO₂ (1019.8 cm⁻¹).^{16,17} The O₃, O₄⁺, O₄⁻, and O₆⁻ ions were also observed as common products as in laserablated metal atom reactions with O₂.^{18–21} In the solid H₂ and D₂ experiments, H (D) and H⁻ (D⁻) are trapped in solid H₂ (D₂) to form clusters, which have been identified in previous papers.^{22,23}

 $\mathbf{Zn} + \mathbf{O}_2 + \mathbf{H}_2$. Figure 1 illustrates IR spectra for laserablated Zn reaction with O_2 and H_2 mixture in excess argon after deposition, ultraviolet photolysis, and annealing. A new zinc isotopic triplet contour band appeared at 738.5 cm⁻¹ on photolysis and decreased on annealing. The intensity distribution and spacing separation of zinc isotopic triplet bands are almost identical to the absorption of OZnO in solid argon²⁴ but red shifted about 10 cm⁻¹. A strong band at 3681.5 cm⁻¹ in the O–H stretching region tracks the triplet, which can be associated

Figure 2. IR spectra in 3800–3600-, 2800–2600-, and 780–440cm⁻¹ regions for laser-ablated Zn co-deposited with 4% H₂ + 0.4% O₂ in excess neon. (a) H₂ + ¹⁶O₂ deposition, (b) after $\lambda > 220$ nm irradiation, (c) H₂ + ¹⁸O₂ deposition, (d) $\lambda > 220$ nm irradiation, (e) D₂ + ¹⁶O₂ deposition, (f) $\lambda > 220$ nm irradiation, (g) D₂ + ¹⁸O₂ deposition, and (h) $\lambda > 220$ nm irradiation.

with the same species (group I). Another set of weak bands (group II) at 663.5, 1955.9, and 3691.7 cm⁻¹ also appeared on deposition and increased slightly on photolysis. In addition, the reaction of laser-ablated Zn atoms and $O_2 + H_2$ in excess argon gave absorptions of OZnO at 748.2, 744.4, and 740.9 cm⁻¹, ZnO at 769.2, 766.8, and 764.5 cm⁻¹, ZnH₂ at 1870.2 and 630.5 cm⁻¹, and ZnH at 1493.9 cm⁻¹ as observed with each reagent separately.^{10,24,25}

For isotopic reagent substitution using ${}^{16}O_2 + D_2$, the 3681.5cm⁻¹ band shifted to 2714.5 cm⁻¹, but the new triplet band sharpened and showed an unusual blue shift to 748.7, 744.8, and 741.1 cm⁻¹ with improved resolution (Figure 1f,g), while group II bands shifted to 2745.1, 1410.3, and 533.2 cm^{-1} , respectively. With ${}^{16}O_2 + HD$, group I bands at 3681.9 cm⁻¹ in the O-H stretching region and 2714.8 cm⁻¹ in the O-D stretching region were observed while triplet bands appeared at 743.3, 740.8, and 738.0 cm⁻¹, respectively. A sample of ¹⁸O₂ + H₂ gave ¹⁸O shifts for all group I and II bands except the 1955.9-cm⁻¹ band. With ^{16,18}O₂ (20% ¹⁶O₂, 50% ^{16,18}O₂ and 30% ¹⁸O₂) + H₂, group I bands showed a doublet for upper band and a triplet for lower bands (Figure 1c) and for group II bands a doublet at 3725.5 and 3711.3, 663.5, and 645.3 cm⁻¹ associated with 1955.9-cm⁻¹ bands were observed. It is not surprising that hydride bands showed no ¹⁸O isotopic shifts and oxide bands showed no deuterium shifts.

Similar experiments with selected isotopic substitutions have been done in solid neon, and the spectra are illustrated in Figure 2 and product absorptions are listed in Table 1. With $O_2 + H_2$ in neon, two new bands at 3696.8 and 745.7 cm⁻¹ were produced, and ZnH₂ bands at 1882 and 633 cm⁻¹ were generated on $\lambda > 220$ nm photolysis. The effect of isotopic substitution on the spectra is also shown in Figure 3. Note that counterpart bands exhibit a several-wavenumber blue shift from argon values and band shapes are broader due to the poor matrix isolation from excess H₂ reagent.

Experiments in solid H_2 and D_2 gave simple results: all metal oxides are reduced, but metal hydroxides and hydrides are trapped. After deposition of Zn with O_2 in H_2 , the Zn H_2 (1875.5 and 631.9 cm⁻¹) and ZnH molecules were observed. Also a weak zinc isotopic triplet at 746.3, 744.1, and 741.3 cm⁻¹ in the Zn–O stretching region and a band at 3684.6 cm⁻¹ in O–H stretching region appeared (Figure 3). UV photolysis (>220 nm) increased these bands by 5-fold, which correspond to group I

TABLE 1: New IR Absorptions (cm⁻¹) Produced on $\lambda > 220$ nm Irradiation of Zn/O₂/H₂ Samples in Excess Neon and Argon

¹⁶ O ₂ , H ₂	^{16,18} O ₂ , H ₂	¹⁸ O ₂ , H ₂	¹⁶ O ₂ , HD	¹⁶ O ₂ , D ₂	¹⁸ O ₂ , D ₂	
			Argon			
3691.7	3691.7	3681.1	3691.8, 2722.4	2722.4	2705.4	HZnOH
3681.5	3681.7, 3670.2	3669.9	3681.7, 2714.8	2714.5	2698.0	$Zn(OH)_2$
1955.9	1955.9	1956.1	1955.7, 1410.5	1410.5	1410.3	HZnOH
1870.9	1870.9	1870.9	1870.4, 1346.3	1357.7	1357.7	ZnH_2
1869.7	1869.7	1869.7		1356.5	1356.5	$(ZnH_2)_2$
1868.2	1868.2	1868.2		1355.5	1355.5	$(ZnH_2)_3$
1494.1	1494.1		1494.1, 1087.5	1087.5	1087.5	ZnH
748.2		720.3	748.2		720.3	O ⁶⁴ ZnO
744.5		716.4	744.5		716.4	O ⁶⁶ ZnO
738.5	729.2	715.1	743.3	748.7	722.4	$^{64}Zn(OH)_2$
	726.7	712.3	740.8	744.8	718.3	$^{66}Zn(OH)_2$
	724.1	709.0	738.0	741.1	714.4	68Zn(OH)2
				660.2		DZnOD
660.3	660		660.2	533.2	529.1	H ⁶⁴ ZnOH
658.5						H ⁶⁶ ZnOH
657.0						H ⁶⁸ ZnOH
630.6	630.6	630.6	553.0	454.4	454.4	ZnH_2
			Neon			
3696.8		3685.7	110011	2725.9	2709.4	$Zn(OH)_2$
1968.7				1417.8		HZnOH
1882		1882		1365	1365	ZnH ₂
830.6		784.6		830.6	784.6	ZnO_3
745.7		720.3		750.6	725.1	⁶⁴ Zn(OH) ₂
		717.4				⁶⁶ Zn(OH) ₂
		714.8				$^{68}Zn(OH)_{2}$
633		633		458	458	ZnH_2
						-

bands observed in solid argon. In addition bands at 665.7, 664.4, and 663.6 cm⁻¹ (Zn–O bending), 1963.4 cm⁻¹ (Zn–H stretching), 3694.0 cm⁻¹ (O–H stretching), and 482.5 and 477.7 cm⁻¹

Figure 3. A and B: IR spectra in 3780–3660-, 2800–2680-, 2000–1160-, and 760–430-cm⁻¹ regions for laser-ablated Zn co-deposited with 0.2% O₂ in excess hydrogen and deuterium $\lambda > 220$ nm irradiation. (a) O₂ in H₂, (b) ¹⁸O₂ in H₂, (c) O₂ in D₂, and (d) ¹⁸O₂ in D₂.

(O–H bending) were generated, which are the counterpart bands of group II in solid argon. With O₂ in solid D₂, the triplet bands of group I shift up to 749.7, 745.9, and 742.2 cm⁻¹, while the triplet bands of group II shift down to 661.5, 659.6, and 657.9 cm⁻¹, which show the same deuterium shift behaviors as in solid argon. Furthermore with O₂/D₂, the O–H and Zn–H stretching modes shift down accordingly and the O–H bending mode moved out of our measurement region. The group I and II bands show slightly different photochemistry: 240–380-nm irradiation favors group I over group II (about 2:1 for the O–D stretching modes), but $\lambda > 220$ nm irradiation allows group II to catch up (Figure 3c). Analogous experiments were done with ¹⁸O₂ in solid H₂ and D₂, and isotopic shifts were observed for all vibrational modes except the Zn–H stretching mode (Table 3).

Cd + O₂ + H₂. IR spectra are shown in Figure 4 for laserablated Cd with O₂ and H₂ mixture in excess argon. Absorptions of CdH₂ were observed at 1753.5 cm⁻¹ (Cd–H stretching mode) and 601.7 cm⁻¹ (H–Cd–H bending mode) and of CdH at 1339.4 cm⁻¹ and OCdO at 625.6 cm⁻¹, which have been identified in our early investigations.^{10,25} Three new bands appeared at 3658.9, 784.2, and 630.7 cm⁻¹ on deposition, increased on ultraviolet photolysis, and decreased on annealing. Experiments with ¹⁶O₂ + D₂ gave large red shifts for the first two bands to 2698.3 and 574.0 cm⁻¹ and a small blue shift for last band to 631.9 cm⁻¹. However with ¹⁸O₂ + H₂, the first two bands showed small shifts to 3647.5 and 782.9 cm⁻¹, but the last band shifted to 606.7 cm⁻¹. Additional experiments with ^{16,18}O₂ + H₂, ¹⁸O₂ + D₂, O₂ + HD, and ^{16,18}O₂ + D₂ were done for band identifications.

Additional weak bands appeared together at 3668.4, 1837.4, 729.1, and 572.0 cm⁻¹, which are very close to the absorptions of HCdOH in solid argon observed by Macrae et al.⁷ However, the 3668.4-cm⁻¹ band was not reported since the very strong H_2O bands overlapped.

Experiments were performed in solid neon with $O_2 + H_2$, and spectra are shown in Figure 5. Strong absorptions at 1774.3 and 606.5 cm⁻¹ are due to CdH₂, and a weak CdH band at 1340.8 cm⁻¹ was also observed.¹⁰ New bands at 3672.0, 1842.1, 783.1, 747.8, 638.8, and 556.0 cm⁻¹ appeared in the O–H, Cd–

TABLE 2: New IR Absorptions (cm⁻¹) Produced on $\lambda > 220$ nm Irradiation of Cd/O₂/H₂ Samples in Excess Neon and Argon

¹⁶ O ₂ , H ₂	^{16,18} O ₂ , H ₂	$^{18}\text{O}_2, \text{H}_2$	¹⁶ O ₂ , HD	¹⁶ O ₂ , D ₂	^{16,18} O ₂ , D ₂	¹⁸ O ₂ , D ₂				
Argon										
3668.4		3658.5	3668.4, 2705.1	2705.3		2688.8	HCdOH			
3658.9	3658.9, 3647.5	3647.5	3659.3, 2698.5	2698.3	2698.3, 2682.1	2682.1	$Cd(OH)_2$			
1837.5	1837.4	1837.4	1837.4, 1320.4	1320.4	1320.4	1320.4	HCdOH			
1753.5	1753.5	1753.5	1756.9, 1260.7	1264.4	1264.4	1264.4	CdH ₂			
1339.4	1339.4	1339.4	1339.4, 974.4	974.4	974.4	974.4	CdH			
784.2	782.9	781.4	786.4, 579.4	573.5	573.5	550.3	$Cd(OH)_2$			
729.1	728.8	728.4	727.4, 572.2				HCdOH			
630.8	619.0	masked	631.0	631.9	621.2	604.9	$^{112}Cd(OH)_{2}$			
629.6	617.8				620.2	603.8	$^{114}Cd(OH)_{2}$			
625.6	613.3	598.0	625.6	625.6	613.3	598.0	OCdO			
604.6	604.6	604.6	530.0	434.2	434.2	434.2	CdH ₂			
601.7	601.7	601.7	527.5	432.5	432.5	432.5	CdH ₂ site			
572.0	572, 544	544.5		547.6		522.8	HCdOH			
			Neo	n						
3672.0		3660.4		2708.4		2691.8	$Cd(OH)_2$			
1774.3		1774.3		1280.4		1280.4	CdH ₂			
1340.8		1340.8					CdH			
1842.1		1842.1		1324.3			HCdOH			
822.6		775.4		822.6		778.1	CdO ₃			
783.1		782.6					$Cd(OH)_2$			
747.8				602.2			HCdOH			
638		611		638		611	Cd(OH) ₂			
606.5		606.5		437.4		437.4	CdH ₂			
556.0		530.1		553.7		527.4	X(OCdO)			

1100000011000000000000000000000000000	Cd/O ₂ /H ₂ Samples	$_2/H_2$ and	of Zn/Or	Irradiation	> 220 ni) Produced on λ	(cm^{-1})	Absorptions	New IR	LE 3:	ΤА
---------------------------------------	---	--------------	----------	-------------	----------	-------------------------	-------------	-------------	--------	-------	----

	Zn					Cđ		
$^{18}O_2/H_2$	O_2/D_2	$^{18}O_2/D_2$	assignment	O ₂ /H ₂	$^{18}O_2/H_2$	O_2/D_2	$^{18}O_2/D_2$	assignment
3682.9	2724.8	2708.2	HZnOH	3671.8	3659.7	2708.1	2691.5	HCdOH
3673.8	2717.3	2700.8	$Zn(OH)_2$	3660.6	3649.8	2700.5	2684.1	$Cd(OH)_2$
1963.4	1416.1	1416.1	HZnOH	1841.5	1841.5	1324.6	1324.6	HCdOH
1875.5	1361.5	1361.5	ZnH_2	1762.5	1762.5	1270.1	1270.1	CdH_2
1495.4	1091.1	1091.1	ZnH	1340.4	1340.4	978.7	978.7	CdH
720.5	749.7	723.2	⁶⁴ Zn(OH) ₂	632.8		633.3	606.6	$Cd(OH)_2$
717.1	745.9	719.2	66Zn(OH)2	793.0				$Cd(OH)_2$
714.1	742.2	715.3	68Zn(OH)2	733.6		578.0	556.3	HCdOH
masked	661.5	632.8	H ⁶⁴ ZnOH	573.0	546.6			HCdOH
masked	659.6	630.9	H ⁶⁶ ZnOH					
masked	657.9	629.0	H ⁶⁸ ZnOH					
	539.2	535.2	DZnOD					
632.1	456.0	456.0	ZnH_2	604.5	604.5	435.4	435.4	CdH_2
482.2			HZnOH	457.3				HCdOH
477.6			HZnOH	453.9				HCdOH
	¹⁸ O ₂ /H ₂ 3682.9 3673.8 1963.4 1875.5 1495.4 720.5 717.1 714.1 masked masked masked 632.1 482.2 477.6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

H, and Cd-O stretching regions. On annealing a very strong cadmium ozonide band appeared at 822.6 cm $^{-1}$.

Analogous experiments were done in pure H_2 and D_2 , and product absorptions are listed in Table 3. The oxide bands (CdO, CdO₂, CdO₃) were not observed, suggesting all oxides were reduced by hydrogen to form hydroxides, as shown in Figure 6.

Figure 7 compares IR spectra for Zn, Cd, and Hg reactions with O_2 and H_2 in excess argon and neon. Note the Group 12 family trends.

M + **H**₂**O**₂. Complementary experiments were done with laser-ablated Zn and Cd reacting with H₂O₂ in a flowing argon stream, and IR spectra are compared in Figure 8. Strong H₂O₂ bands were observed at 3597, 3587, and 1270.8 cm⁻¹.¹¹ The Zn product bands at 3681.4 and 739.3 cm⁻¹ were sharper, and zinc isotopic splittings were resolved on the latter at 737.1 and 735.0 cm⁻¹. Irradiation at 240–380 nm increased each band by 25%, and further irradiation at λ > 220 nm increased each band another 20%. Additional weak bands were observed at 1956.4 and 660.2 cm⁻¹. The hard radiation from the Zn ablation plume photodissociated some H₂O₂ into the HOH•••O complex with absorptions at 3730, 3725.3 (site), 3633, and 3630.1 (site) cm⁻¹,¹² and HO₂ radical was also observed. The analogous investigation with Cd gave bands at 3658.9, 783.4, 630.9, and 629.6 cm⁻¹, which increased together on UV irradiation and displayed the ¹¹²Cd and ¹¹⁴Cd isotopic contours for the latter band. Annealing to 33 K sharpened these bands and enhanced the cadmium isotopic splittings now at 631.4, 630.3, 629.1, and 627.9 cm⁻¹ for the ¹¹⁰Cd, ¹¹²Cd, ¹¹⁴Cd, and ¹¹⁶Cd products. In addition, weak bands were observed at 3669.9, 1837.3, and 729 cm⁻¹. Another experiment was done with a fresh UHP charge, the H₂O₂ absorptions were 2.5 times as strong, and the product absorptions were 50% more intense: Spectra from the latter experiment are illustrated in Figure 8.

01

To complement and strengthen our earlier identification of $Hg(OH)_{2}$,³ new experiments were done with Hg and H₂O₂. Figure 8a shows the spectrum of Hg vapor co-deposited with argon/H₂O₂, and no products were formed. Irradiation at 240–380 nm had no effect, but irradiation with the full light of the mercury arc produced new absorptions at 3629.0, 927.0, and 637.1 cm⁻¹ with twice the intensity and in excellent agreement with the 3629.4-, 927.1-, and 637.3-cm⁻¹ absorptions assigned to Hg(OH)₂ from the Hg, O₂, and H₂ photochemical reaction.³ Note that the photodissociation of H₂O₂ and the yield of the

Figure 4. A and B: IR spectra in 3780–3630-, 2780–2660-, 1900–1220-, and 800–420-cm⁻¹ regions for laser-ablated Cd co-deposited with 6% H₂ + 0.4% O₂ in excess argon. (a) H₂+O₂ deposition, (b) after $\lambda > 220$ nm irradiation, (c) H₂ + ^{16,18}O₂ deposition and $\lambda > 220$ nm irradiation, and likewise for (d) H₂ + ¹⁸O₂, (e) D₂ + O₂, (f) D₂ + ^{16,18}O₂, (g) D₂ + ¹⁸O₂, and (h) HD +O₂.

Figure 5. IR spectra in 3900–2600-, 1900–1240-, and 780–440cm⁻¹ regions for laser-ablated Cd co-deposited with 4% H₂ + 0.4% O₂ in excess neon. (a) H₂ + O₂ deposition, (b) after $\lambda > 220$ nm irradiation, (c) D₂ + O₂ deposition, (d) after $\lambda > 220$ nm irradiation, (e) D₂ + ¹⁸O₂ deposition, and (f) after $\lambda > 220$ nm irradiation.

HOH····O complex are greatly reduced, the 3725.3-cm⁻¹ HOH····O site splitting is weaker than in Figure 8i, and the contribution at 3630.1 cm⁻¹ is expected to be even weaker. Hence, most of the sharp absorption at 3629.0 cm⁻¹ is due to Hg(OH)₂.

Figure 6. A and B: IR spectra in 3760–3650-, 2800–2670-, 1900–1150-, and 750–420-cm⁻¹ regions for laser-ablated Cd co-deposited with 0.2% O₂ in excess hydrogen and deuterium. (a) O₂ in H₂ deposition, (b) after $\lambda > 220$ nm irradiation, (c) O₂ in D₂ deposition, (d) after $\lambda > 220$ nm irradiation, (e) ¹⁸O₂ in D₂ deposition, and (f) after $\lambda > 220$ nm irradiation.

Wavenumbers (cm⁻¹)

Figure 7. IR spectra in the 3000–3600- and 800–550-cm⁻¹ regions comparing the products of ultraviolet photochemical reactions of Zn, Cd, and Hg with $O_2 + H_2$ in excess argon and neon. (a) Hg in Ne, (b) Cd in Ne, (c) Zn in Ne, (d) Hg in Ar, (e) Cd in Ar, and (f) Zn in Ar.

Calculations. Calculations were done for $Zn(OH)_2$ and Cd-(OH)₂ at the B3LYP and MP2 levels of theory, and the structures are illustrated in Figure 9. These molecules have the C_2

Figure 8. IR spectra in the 3800–3550- and 950–550-cm⁻¹ regions comparing the products of ultraviolet photochemical reactions of Zn, Cd, and Hg with H₂O₂ in excess argon. (a) Hg vapor deposited from 50 °C liquid for 60 min, (b) after 240–380 nm irradiation, (c) after λ > 220 nm irradiation, (d) laser-ablated Cd deposited for 40 min, (e) after λ > 220 nm irradiation, (f) after annealing to 22 K, (g) after a second λ > 220 nm irradiation, (h) laser-ablated Zn deposited for 40 min, (i) after 240–380 nm irradiation, and (j) after λ > 220 nm irradiation. The 835.3- and 767.6-cm⁻¹ absorptions are common to H₂O₂ subjected to radiation from laser ablation of metal targets.

$$\begin{array}{c} \textcircled{\begin{tabular}{c} \hline \end{tabular}} & & & & & \\ & & & & \\ \hline \end{tabular} & & \\ \hline \end$$

$$\begin{array}{c} \textcircled{0} \\ (H) \\ (H)$$

Figure 9. Structures of Group 12 dihydroxide molecules computed at the B3LYP and MP2 levels using the 6-311++G(3df, 3pd) basis for H, O, and Zn and the SDD pseudopotential for Cd and Hg. Bond distances in angstrom units.

symmetry of the parent H_2O_2 molecule, which is shared with Be(OH)₂ and Hg(OH)₂ but not with the dihydroxides of Ca, Sr, and Ba.³⁻⁵ Calculated frequencies are listed in Table 4. Also included are other important molecules that relate to this system.

Discussion

Assignment of Zn and Cd hydroxides will be presented based on isotopic shifts in the IR spectrum and theoretical calculations of vibrational frequencies.

Zn(OH)₂. In solid argon new triplet absorptions at 739.3, 737.1, and 735.0 cm⁻¹ (from more dilute reagent H₂O₂ experiment) track the 3681.5-cm⁻¹ band on photolysis and annealing. The new triplet pattern is appropriate for ⁶⁴Zn, ⁶⁶Zn, and ⁶⁸Zn in natural abundance where only one Zn atom is involved in this molecule: A similar zinc isotopic pattern was observed for OZnO.²⁴ The triplet shifts to 715.1, 712.3, and 709.0 cm⁻¹, and the 3681.5-cm⁻¹ band shifts to 3669.9 cm⁻¹

in the ¹⁸O₂ + H₂ experiment. This shows that the lower bands are Zn–O stretching while the upper one is due to O–H stretching motions. The oxygen isotopic triplet pattern for the lower mode with ¹⁶O₂ + ¹⁶O¹⁸O + ¹⁸O₂ + H₂ shows that two equivalent oxygen atoms are involved, and a doublet was observed for the O–H stretching mode with the same sample. Very similar isotopic patterns were observed for Group 2 metal dihydroxides M(OH)₂ (M = Be, Mg, Ca, Sr, and Ba)^{4,5} and Hg(OH)₂,³ and Zn(OH)₂ is assigned accordingly. This identification is substantiated by observation of the same bands with the O₂ + H₂ and H₂O₂ reagents.

With $O_2 + D_2$, the Zn–O stretching mode blue shifts about 10 cm⁻¹ to 748.7, 744.8, and 741.1 cm⁻¹, indicating strong coupling of the O–D bending vibration with this mode. The O–D stretching mode appeared at 2714.5 cm⁻¹, giving a 1.3565 H/D ratio, which is very close to the ratio found for Group 2 metal dihydroxides^{4,5} and Hg(OH)₂.³ In addition, the 16/18 ratio, 1.00316, is near that found for Ca(OH)₂, namely, 1.00323, which also has a similar H/D ratio (1.3555). With O_2 + HD, two bands were observed at 3681.7 and 2714.8 cm⁻¹ for a molecule with OH and OD groups. The lack of a shift from Zn(OH)₂ means that very little coupling occurs between two equivalent O–H groups. Finally, the Zn–O stretching mode, 743.3 cm⁻¹, was found near the average of H₂ and D₂ reagent values.

In solid hydrogen, the absorptions of Zn(OH)₂ were observed at 3684.6 cm⁻¹ (O–H stretching) and 746.3, 744.1, and 741.3 cm⁻¹ (Zn–O stretching), slightly higher than the argon matrix values. With O₂ in solid D₂, the O–H stretching mode shifts to 2717.3 cm⁻¹, giving the H/D = 1.3560 ratio, which is in line with the argon value. The blue shifts of the Zn–O stretching mode of Zn(OD)₂ also correspond with argon values. With ¹⁸O₂ in solid H₂ the Zn–O modes shift to 720.4, 717.0, and 714.1 cm⁻¹, giving a 1.0360 ¹⁶O/¹⁸O ratio, which is slightly higher than in argon and can be reasoned by interaction of Zn–O–H with H₂. The Zn–O^{δ –}H^{δ +···}H–H interaction results in slightly more Zn–O vibrational motion than in free Zn–O–H.

The neon matrix counterparts of both $Zn(OH)_2$ and $Zn(OD)_2$ absorptions are blue shifted slightly, to 3696.8 and 2725.9 cm⁻¹. which is the normal relationship for matrix shifts dominated by polarizability-based dispersive interactions. The assignment is further supported by neon matrix observations of 745.7 cm⁻¹ (Zn-O stretching) with $H_2 + O_2$ and 725.1 cm⁻¹ with $D_2 +$ O_2 . The O-H mode gives a 1.3562 H/D ratio that is almost identical to the argon value. However the zinc isotopic information is lost for the O-Zn-O stretching mode because of band broadness. Additional experiments with $H_2 + {}^{18}O_2$ gave 3685.7 and 720.3 cm⁻¹ and with $D_2 + {}^{18}O_2$ produced 2709.4 and 725.1 cm⁻¹, which are in excellent correspondence with argon spectra. Complementary information is obtained in solid H_2 and D_2 , where the O-H and O-D stretching modes (Figure 3A) are between neon and argon matrix values and the Zn-O stretching modes exhibit resolved isotopic splittings for a single Zn atom (Figure 3B).

The identification of $Zn(OH)_2$ is supported by B3LYP and MP2 calculations. The calculations suggest a structure with a linear O–Zn–O subunit and two H located off axis at 115.5° with a dihedral angle of 93° and C_2 symmetry. The predicted Zn–O stretching frequency at 750.3 cm⁻¹ (B3LYP) and 747.3 cm⁻¹ (MP2) is in excellent agreement with the observed value of 738.5 cm⁻¹. The antisymmetric O–H stretching mode (B symmetry) is calculated at 3872.1 cm⁻¹ (B3LYP) and 3925.1 cm⁻¹ (MP2), which are overestimated by 5.2 and 6.6%, respectively, which is consistent within prediction error of O–H stretching modes in metal hydroxides.⁵ The blue shift in the

TABLE 4: Calculated Frequencies for M(OH)₂, OMO, HMOH, and MOH (M = Zn and Cd) at B3LYP Level of Theory

Zn(OH) ₂ ^a		$Zn(^{18}OH)_2$		$Zn(OD)_2$		OZnO ^b		HZnOH ^c		ZnOH ^d	mode ^e
calcd 3872.9 (A, 13)	obsd	calcd 3860.1 (12)	obsd	calcd 2819.9 (9)	obsd	calcd	obsd	calcd 3887.6 (48)	obsd 3691.7	calcd	O-H s-str
3872.1 (B, 94) 790.0 (B, 22) 785.3 (A, 21)	3681.5	3859.4 (91) 785.5 (38) 782.1 (20)	3669.9	2819.2 (63) 619.6 (6) 577.0 (59)	2714.5			1990.7 (83) 722.7 (46)	1955.9	3832.5 (39)	O-H a-str Zn-O-H bend Zn-O-H bend
750.3 (B, 213) 607.3 (A, 0) 175.9 (A, 9) 159.9 (B, 9)	738.5	723.6 (185)	715.1	755.1 (131)	748.7	797.7 (47) 633.8 (0)	748.2	664.2 (102) 479.8 (57)	660.3 482.5	712.2 (36)	Zn-O a-str Zn-O s-str
137.6 (A, 102)						166.7 (312)		460.3 (66)	477.7	552.0 (59)	O-Zn-O bend
Cd(OH)2 ^a		Cd(18OH)2		$Cd(OD)_2$		OCdO ^b		HCdOH ^c		CdOH ^d	mode ^e
calcd 3849.2 (A, 9) 3848.5 (B, 86) 830.9 (A, 9)	obsd 3658.9	calcd 3836.5 (8) 3835.8 (83) 827.6 (18)	obsd 3647.5	calcd 2802.5 (6) 2801.7 (57) 616.3 (13)	obsd 2698.3	B3LYP	obsd	calcd 3863.0 (37) 1911.8 (118) 766.4 (57)	obsd 3668.4 1837.4 729.1	calcd 3807.3 (40)	O-H s-str O-H a-str Cd-O-H bend
823.1 (B, 78) 617.4 (B, 114) 524.6 (A, 0) 145.8 (A, 3)	784.2 630.7	820.0 (72) 590.7 (107)	781.4	586.2 (10) 630.3 (152)	631.9	632.9 (36) 536.7 (0)	625.6	562.8 (65) 479.3 (46)	572.0 457.3	733.7 (43)	Cd-O-H bend Cd-O a-str Cd-O s-str
127.1 (B, 5) 104.1 (A, 89)						132.5 (262)		448.4 (59)	453.9	444.3 (27)	O-Cd-O bend

^{*a*} Structural parameters given in Figure 9. Frequencies, cm⁻¹ (intensities, km/mol). Irreducible representations in C₂ point group given for Zn(OH)₂ and Cd(OH)₂. ^{*b*} Linear molecules: Zn–O, 1.733 Å; Cd–O, 1.931 Å. ^{*c*} Planar molecules: H–Zn, 1.512 Å; Zn–O, 1.783 Å; O–H, 0.959 Å; H–Zn–O, 175.8°; Zn–O–H, 118.4°; H–Cd, 1.644 Å; Cd–O, 1.996 Å; O–H, 0.960 Å; H–Cd–O, 176.1°; Cd–O–H, 114.4°. ^{*d*} Zn–O, 1.839 Å; O–H, 0.965 Å; Cd–O–H, 109.5°. ^{*e*} Mode description for M(OH)₂ molecules.

antisymmetric stretching mode from interaction with the H(D)-O-Zn-O-(D)H bending mode is also predicted. Note that the O-Zn-O stretching mode for free OZnO is calculated at 797.7 cm⁻¹ (B3LYP), which is 49.5 cm⁻¹ higher than the argon matrix value, partly because of a stronger interaction of the triplet OZnO molecule with the argon matrix.

 $Cd(OH)_2$. Three bands at 3658.9, 784.2, and 630.8 cm⁻¹ track together on irradiation and annealing in $Cd + O_2 + H_2$ reactions in solid argon. With $O_2 + D_2$, these bands appeared at 2698.3, 631.9, and 573.5 cm⁻¹, respectively. The H/D ratios (3658.9/ 2698.3 = 1.3560 and 784.2/573.5 = 1.3674) show that the 3658.9 cm^{-1} band is primarily a hydrogen motion, which is appropriate for the O-H stretching mode. The 630.7-cm⁻¹ band shifts up 1.2 cm⁻¹ in the same experiment, and this mode must be assigned to a metal–oxygen vibration. With $^{18}\mathrm{O}_2 + \mathrm{H}_2$, two upper bands have very slight shifts (3647.7 and 781.4 cm^{-1} , respectively), but the 630.7-cm⁻¹ band moved under the CdH₂ band at 604.6 cm^{-1} , which clearly suggests a metal-oxygen stretching mode assignment. Experiments with ${}^{16}O_2/{}^{16}O^{18}O/{}^{18}O_2$ + H₂ gave the first two bands of a triplet distribution denoting the vibration of two equivalent oxygen atoms. Experiments with $^{18}O_2 + D_2$ and $^{16,18}O_2 + D_2$ provided additional isotopic data for this molecule: Doublet bands at 2682.1 and 2698.3 cm⁻¹ and triplet bands at 631.9, 620.4, and 604.5 cm^{-1} confirm the cadmium dihydroxide assignment. Accordingly, the 3658.9-, 784.2-, and 630.8-cm⁻¹ bands are assigned to the Cd(OH)₂ molecule, which is substantiated by observation of essentially the same absorptions for the $Cd + H_2O_2$ reaction. The 630.8cm⁻¹ absorption is sharp enough in the latter spectrum (Figure 8) to give a partially resolved natural cadmium isotopic distribution^{10,24} that is characteristic of a single Cd atom vibration.

Assignment of 3658.9, 784.2, and 630.8 cm⁻¹ bands to the Cd(OH)₂ molecule is supported by B3LYP and MP2 theoretical calculations. The geometry of Cd(OH)₂ is very similar to Zn-(OH)₂ with slightly longer Cd–O and O–H bond length and smaller dihedral angle. The strong antisymmetric (B symmetry) O–H stretching and O–Cd–O stretching modes for Cd(OH)₂

are predicted at 3848.5 and 617.4 cm⁻¹ at the B3LYP level with +5.2 and -2.1% error, which reproduce the observed values very well. In addition, the Cd-O-H bending mode is calculated at 823.1 cm⁻¹ with +5.0% error. The calculated O-D stretching, O-Cd-O stretching, and Cd-O-D bending modes of Cd(OD)₂ are at 2801.7, 630.3, and 586.2 cm⁻¹, respectively, but the 586.2 cm⁻¹ band loses IR intensity by 8-fold, which is in very good agreement with experimental observations.

In solid neon, absorptions of Cd(OH)₂ appear at 3672.0, 783.1, and 638 cm⁻¹ and Cd(OD)₂ at 2708.4 and 638 cm⁻¹. Note that the O–Cd–O stretching mode was essentially not shifted, while the bending Cd–O–D mode was not observed. With ¹⁸O₂ substitution, all bands shift accordingly. The pure H₂-doped O₂ sample gave IR absorptions at 3660.6, 793.0, and 632.8 cm⁻¹, which are assigned to Cd(OH)₂, and pure D₂ gave counterpart bands for Cd(OD)₂ at 2700.5 and 633.3 cm⁻¹. Additional experiments with ¹⁸O₂ + H₂ and ¹⁸O₂ + D₂ gave appropriate ¹⁸O isotopic shifts.

HZnOH. Two weak bands at 1955.3 (site at 1965.3) and 660.3 cm⁻¹ tracked in the Zn atom reaction with O₂ and H₂ mixture in solid argon, which were assigned to HZnOH by Greene et al. and Macrae et al. in the reaction of Zn with H₂O in solid argon.^{7,25} An additional weak 3691.7-cm⁻¹ band in the O–H stretching region shows the same annealing and photolysis behavior and can be assigned to the OH stretching mode for HZnOH, and the deuterium counterpart was found at 2722.4 cm⁻¹ giving the 1.356 H/D ratio. With ¹⁸O₂ + H₂, the upper band shifted to 3681.8 cm⁻¹ and the lower band shifted under ZnH₂ (Zn–O stretching region). With ¹⁶O₂ + HD, the spectra show two bands at 3691.8 and 2722.4 cm⁻¹ (O–H and O–D stretching) and two bands at 1955.7 and 1410.7 cm⁻¹ (Zn–H and Zn–D stretching). All of this spectral information supports the HZnOH assignment.

The solid H₂ and D₂ experiments gave clear O–H (O–D), Zn–H (Zn–D), and Zn–O stretching vibrations for HZnOH (DZnOD). A zinc isotopic triplet at 665.7, 664.2, and 663.6 cm⁻¹ in O₂/H₂ shifts to 661.5, 659.6, and 657.9 cm⁻¹ in O₂/D₂ and shifts to 632.8, 630.9, and 629.0 cm⁻¹ in $^{18}O_2/D_2$, which is assigned to the Zn–O stretching modes in HZnOH (DZnOD). However this mode is overlapped with the ZnH₂ bending mode in ¹⁸O₂/H₂ experiments. In addition, the Zn–H and O–H stretching modes were observed at 1963.4 and 3694.0 cm⁻¹, respectively, which shifts to 1416.1 and 2724.8 cm⁻¹ with O₂ in solid D₂. In p-H₂, the strong Zn–H stretching mode was resolved into a zinc isotopic triplet,¹⁰ which further shows that a single Zn atom is involved. Furthermore the O–H bending modes at 482.5 and 477.7 cm⁻¹ with O₂ in solid H₂ were observed but the deuterium counterparts shift out of our measurement region. The 2724.8 and 2717.3 cm⁻¹ bands for DZnOD and Zn(OD)₂ clearly show different ultraviolet photochemical behavior. In solid neon the product bands are broader, and new bands at 1968.3 and 666.5 cm⁻¹ in the Zn reaction with H₂ + O₂ are appropriate for HZnOH.

DFT frequency calculations predict O–H stretching at 3887.6 cm⁻¹, Zn–H stretching at 1990.7 cm⁻¹, and Zn–O stretching at 664.2 cm⁻¹, which match the experimental observations nicely. The calculated O–H stretching vibration in HZnOH is 15.5 cm⁻¹ higher than in Zn(OH)₂ and the Zn–O vibration in HZnOH is 86.1 cm⁻¹ lower than in Zn(OH)₂, which are in good agreement with our observations.

HCdOH. The absorptions due to HCdOH in argon at 1837.4 (Cd–H stretching), 729.1 (Cd–O–H bending), and 572.0 cm⁻¹ (Cd–O stretching) are basically the same as the frequencies reported by Greene et al.²⁵ and Macrae et al.⁷ However the O–H stretching frequency was not observed for this molecule in Cd + H₂O reactions. With O₂ + H₂ in solid argon, a weak band at 3668.4 cm⁻¹ tracks the lower bands and is appropriate for the O–H stretching mode, as it shifts to 3647.5 cm⁻¹ with ¹⁸O substitution and to 2698.3 cm⁻¹ with deuterium (H/D = 1.360).

In solid neon, bands at 1842.1 and 747.8 cm⁻¹ appeared on deposition and increased on photolysis. These bands correspond to argon values of HCdOH very well, and the assignment is straightforward.

The experimental assignments to HCdOH and DCdOD are confirmed by the solid H₂ and D₂ experiments (Figure 6). The higher-frequency 3671.8 and 2708.1 cm⁻¹ bands for O–H and O–D stretching modes track with lower-frequency 1841.5 and 1324.6 cm⁻¹ bands for Cd–H and Cd–D vibrations: 733.6 and 578.0 cm⁻¹ for Cd–O–H and Cd–O–H bending and a 573.0 cm⁻¹ band for the O–Cd–O stretching mode for HCdOH.

These assignments are supported by DFT frequency calculations. First, the O–H stretching mode of HCdOH is predicted to be 14.5 cm⁻¹ higher than that for Cd(OH)₂, and we observe it 11.2 cm⁻¹ higher (solid hydrogen). Second, the Cd–O stretching mode for HCdOH is computed to be 54.6 cm⁻¹ lower than that for Cd(OH)₂, and we observe it 58.7 cm⁻¹ lower. Third, the Cd–O–H bending mode predicted at 766.4 cm⁻¹ with increased intensity and is observed for HCdOH at 729.1 cm⁻¹.

Bonding in Metal Dihydroxides. The O–H stretching frequencies of molecular metal hydroxides are often related to ionic character^{26–28} since more charge transfers to OH from the metal reducing the O–H bond strength. For example the Group 2 metal dihydroxide O–H stretching frequencies at 3829.8 cm^{-1} for Mg(OH)₂, 3784.6 cm⁻¹ for Ca(OH)₂, 3760.6 cm⁻¹ for Sr(OH)₂, and 3724.2 cm⁻¹ for Ba(OH)₂, in solid argon continuously decrease as ionic character increases. This is consistent with Mulliken charges +1.29 (Mg), +1.72 (Ca), +1.75, (Sr), and +1.74 (Ba), although Mulliken charge is an overestimate of the actual charge.⁵ However, the O–H stretching frequencies of Zn(OH)₂, Cd(OH)₂, and Hg(OH)₂ at 3681.5, 3658.9, and 3629.4 cm⁻¹ and Mulliken charges +0.78 (Zn), +1.52 (Cd), and +1.41 (Hg) both decrease in the Zn(OH)₂, Cd-

Figure 10. Relative energies computed at the B3LYP level using the 6-311++G(3df, 3pd) basis for H, O, and Zn and SDD for Cd and Hg for important Zn, Cd, and Hg oxide and dihydroxide species.

 $(OH)_2$, and $Hg(OH)_2$ group. Therefore ionic character is not the only consideration.

The ionic limit can be considered at 3644 cm⁻¹, as represented by solid Ca(OH)₂, or better yet 3555.6 cm⁻¹, as represented by gaseous OH^{-.29,30} However, the neutral OH radical fundamental frequency, 3568 cm⁻¹, falls in this region as well.³¹ So the position of the O–H stretching frequency is not in itself a measure of charge on the OH moiety. The structures of Zn-(OH)₂, Cd(OH)₂, and Hg(OH)₂, particularly the linear O–M–O linkage and the 115–109° M–O–H angles (Figure 9), argue for considerable covalent character. In marked contrast, the Sr-(OH)₂ and Ba(OH)₂ molecules are bent at the metal centers, the M–O–H subunits are linear, and the molecules have considerable ionic character.^{5,32}

Natural orbital analysis was done on the Group 2 and 12 $M(OH)_2$ molecules for comparison. The Ca, Sr, and Ba species have *ns* populations of 0.01 e and *nd* populations of 0.09–0.12 e, but in contrast Zn in Zn(OH)₂ has $4s^{0.52}$ $3d^{9.91}$ valence population, Cd in Cd(OH)₂ has $5s^{0.59}$ $4d^{9.90}$, and Hg in Hg-(OH)₂ has $6s^{0.92}$ $5d^{9.79}$. Clearly slightly higher 6s population in Hg(OH)₂ suggests more back electron donation from OH⁻, indicating significant covalent character, and in aqueous solution HgO precipitates to form solid zigzag -O-Hg-O-Hg- chains.^{1,2} The effect of 10 *nd* electrons on the bonding and structure of Group 12 relative to Group 2 M(OH)₂ molecules is straightforward.

The O–H fundamentals for Zn(OH)₂ at 3681.5, 3684.6, and 3696.8 cm⁻¹ in solid argon, hydrogen, and neon, respectively, show the normal relationship for matrix shifts. Similar observations for Cd(OH)₂ at 3658.9, 3660.6, and 3672.0 cm⁻¹ and for Hg(OD)₂ at 2677.7, 2679.6, and 2684.0 cm⁻¹³ in solid argon, deuterium, and neon, respectively, follow the same pattern.

Reaction Mechanisms. The stable Group 12 $M(OH)_2$ molecules are formed in considerable yield from the photoexcited metal atom reaction with O₂ and H₂ mixtures. The ultraviolet excitation is sufficient to access the ¹P states of the Zn and Cd atom reagents,^{33,34} although the ³P states are sufficiently energetic to form OCdO and OZnO in exothermic reactions (Figure 10). Both OMO and MH₂ molecules^{10,24,25} are made in these reactions, and we believe that OMO inserts into H₂ to form the HOMOH molecules, reaction 1. When a second H₂ molecule is present, the HMOH molecule can be formed.

$$M + O_2 + H_2 \rightarrow OMO + H_2 \rightarrow M(OH)_2 (M = Zn, Cd)$$
 (1)

$$M + O_2 + 2H_2 \rightarrow MO + H_2O + H_2 \rightarrow HMOH + H_2O$$
 (2)

Figure 10 shows the relative energies of the OZnO, OCdO reagent and Zn(OH)₂, Cd(OH)₂ product molecules, and the exothermic nature of the reactions (ΔE for reaction 1 is -111, -81, and -54 kcal/mol for M = Zn, Cd, and Hg, respectively, at the B3LYP level). Even though the Group 12 dioxide and dihydroxide molecules are stable, the Group 2 analogues are even more stable (for example Ca(OH)₂ is 181 kcal/mol more stable than Ca + O₂ + H₂).

The insertion reaction with H_2O_2 is straightforward, and the observation of the same product absorptions with the $O_2 + H_2$ and H_2O_2 reagents confirms our preparation of these $M(OH)_2$ molecules. The Sr + H_2O_2 reaction has been employed in the gas phase to form SrOH.³⁵ Here the energized $M(OH)_2$ molecule is relaxed by the matrix before decomposition to MOH can proceed.

$$M + HOOH \rightarrow HOMOH$$
(3)

Conclusions

Laser-ablated zinc and cadmium atoms were deposited with H₂ and O₂ in excess argon or neon and with O₂ in pure hydrogen or deuterium during deposition at 8 or 4 K. Full mercury arc irradiation excites metal atoms to insert into O₂ producing OMO molecules (M = Zn and Cd), which react further with H_2 molecules to give the metal hydroxides M(OH)2 or HMOH and H₂O. The M(OH)₂ molecules were identified through O-H and M-O stretching modes with appropriate HD, D₂, ^{16,18}O₂, and ¹⁸O₂ isotopic shifts. The HMOH molecules were characterized by O-H, M-H, and M-O stretching modes and an M-O-H bending mode, which were particularly strong in pure H₂ and D₂. Analogous Zn and Cd atom reactions with H₂O₂ in excess argon produced the same M(OH)2 absorptions, which substantiates these assignments. DFT and MP2 calculations reproduce the IR spectra of these molecules. The bonding of Group 12 metal dihydroxides and comparison to Group 2 dihydroxides is considered. Although the Group 12 dihydroxide O-H stretching frequencies are lower, calculated charges show that the Group 2 dihydroxide molecules are more ionic.

Acknowledgment. We thank the National Science Foundation for support by Grant CHE 03-52487 and L. Khriachtchev for helpful suggestions on the use of urea-hydrogen peroxide.

References and Notes

(1) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999.

(2) Holleman, A. F.; Wiberg, E. Lehrbuch der Anorganischen Chemie; Wiberg, N., Ed.; Walter de Gruyter: Berlin, 1995; Vol. 101, p 1389.

(3) Wang, X.; Andrews, L. Inorg. Chem. 2005, 44, 108 (Hg(OH)₂).
(4) Thompson, C. A.; Andrews, L. J. Phys. Chem. 1996, 100, 12214 (Be(OH)₂).

(5) (a) Andrews, L., Wang, X. *Inorg. Chem.* **2005**, *44*, 11. (b) Wang, X.; Andrews, L. J. Phys. Chem. A **2005**, *109*, 2782.

(6) Kauffman, J. W.; Hauge, R. H.; Margrave, J. L. High Temp. Sci. 1984, 18, 97.

(7) Macrae, V. A.; Greene, T. M.; Downs, A. J. Chem. Phys. Phys. Chem. 2004, 4586.

(8) Andrews, L.; Citra, A. Chem. Rev. 2002, 102, 885.

(9) Andrews, L. Chem. Soc. Rev. 2004, 33, 123.

(10) Wang, X.; Andrews, L. J. Phys. Chem. A **2004**, 108, 11006 (Zn, Cd + H₂).

(11) Pettersson, M.; Tuominen, S.; Rasanen, M. J. Phys. Chem. A 1997, 101, 1166.

(12) Pehkonen, S.; Pettersson, M.; Lundell, J.; Khriachtchev, L.; Rasanen, M. J. Phys. Chem. A 1998, 102, 7643.

(13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Gaussian, Inc.: Pittsburgh, PA, 1998.

(14) Milligan, D. E.; Jacox, M. E. J. Mol. Spectrosc. 1973, 46, 460.

(15) (a) Andrews, L.; Ault, B. S.; Grzybowwski, J. M.; Allen, R. O. J. Chem Phys. **1975**, 62, 2461. (b) Wight, C. A.; Ault, B. S.; Andrews, L. J. Chem. Phys. **1976**, 65, 1244.

(16) Jacox. M. E.; Milligan, D. E. J. Mol. Spectrosc. 1972, 42, 495.

(17) Smith, D. W.; Andrews, L. J. Chem. Phys. 1974, 60, 81.

(18) Jacox, M. E.; Thompson, W. E. J. Chem. Phys. 1994, 100, 750.

(19) Thompson, W. E.; Jacox, M. E. J. Chem. Phys. 1989, 91, 3826.

(20) Zhou, M. F.; Hacaloglu, J.; Andrews, L. J. Chem Phys. **1999**, 110, 9450.

(21) Wang, X.; Andrews, L. J. Phys. Chem. A 2001, 105, 5812.

(22) Wang, X.; Andrews, L. J. Phys. Chem. A 2004, 108, 1103.

(23) (a) Andrews, L.; Wang, X. J. Phys. Chem. A 2004, 108, 3879. (b)
 Andrews, L.; Wang, X. J. Chem. Phys. 2004, 121, 4724.

(24) Chertihin, G. V.; Andrews, L. J. Chem. Phys. **1997**, 106, 3457 (ZnO₂ and CdO₂).

(25) Greene, T. M.; Brown, W.; Andrews, L.; Downs, A. J.; Chertihin, G. V.; Runeberg, N.; Pyykko, P. J. Phys. Chem. **1995**, 99, 7925 (ZnH₂ and CdH₂ in solid argon).

(26) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H. J. Chem. Phys. **1986**, *84*, 901.

(27) Koput, J.; Peterson, K. A. J. Phys. Chem. A **2002**, 106, 9595 and references therein.

(28) (a) Pereira, R.; Levy, D. H. J. Chem. Phys. **1996**, 105, 9733. (b) Levy, D. H., 2004, personal communication.

(29) Lagarde, P.; Nerenberg, M. A. H.; Farge, Y. *Phys. Rev. B* **1973**, *8*, 1731.

(30) Rosenbaum, N. H.; Owrutsky, J. C.; Tack, L. M.; Saykally, R. J. J. Chem. Phys. **1986**, 84, 5308.

(31) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand: Princeton, 1979.

(32) Kaupp, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1992, 114, 491.
(33) Moore, C. E. Atomic Energy Levels, Circular 467; National Bureau of Standards: Washington, DC, 1952.

(34) Ault, B. S.; Andrews, L. J. Mol. Spectrosc. **1977**, 65, 102.

(35) Presunka, P. I.; Coxon, J. A. J. Chem. Phys. 1994, 101, 201.